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Abstract The relationship between taxonomic and
functional diversity indices has been used to better de-
scribe and understand the structure of biological com-
munities. Functional diversity is expected to have an
asymptotic relationship with species richness because at
some point, the addition of new species will increase
some of the already established functional groups (func-
tional redundancy). However, the asymptotic relation-
ship may not be reached in intermediately disturbed
systems once many intolerant species that would have
played a redundant role or even represented some func-
tional groups have been lost. This study aimed to ad-
dress such a relationship (taxonomic and functional
indices) and to evaluate the functional redundancy in
intermediately disturbed streams in the Atlantic
Rainforest domain. We expected a positive linear rela-
tionship between taxonomic and functional diversity;
however, we did not expect to find an asymptotic rela-
tionship between richness and functional diversity
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because of the loss of many intolerant species caused
by anthropogenic uses. The taxonomic diversity indices
were Species Richness (SR) and Simpson’s Diversity
(SD), while the functional diversity indices were the
Functional Richness (FRic) and Functional Dispersion
(FDisp). The two taxonomic and two functional diver-
sity indices showed a significant positive relationship
that never reached an asymptote, suggesting low func-
tional redundancy in the fish communities. Our results
indicate that care is needed in the management of the
studied streams because assemblies with low functional
redundancy are more susceptible to loss of functions in
the case of species loss.

Keywords Freshwater fishes - Streams - Ecology - Traits

Introduction

Diversity indices based on taxonomic composition have
been widely used as descriptors of community structure
and as tools to assess environmental changes across
changing gradients. Recently, some concerns have been
raised about the limitations of these classic taxonomic
indices because they consider only species abundance
and richness, omitting the identity of species and their
role and function in the ecosystem (Mokany et al. 2008).
This fact limits their predictive capacity for community
structure and functioning (Diaz and Cabido 2001;
Ricotta 2005; Cianciaruso et al. 2009). On the other
hand, the rise of functional diversity indices enabled
the discussion and better understanding of ecosystem
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functioning (Cianciaruso et al. 2009). These indices are
related to the functions (e.g., nutrient cycle, defence
against predation, resource acquisition and storage) that
species develop as part of their role in the ecosystem
(Diaz and Cabido 2001; Manna et al. 2013), considering
their individual characteristics and their interaction with
other species (Mokany et al. 2008). Functional diversity
is based on species functional traits that are measurable
expressions of the form, physiology, behaviour, ecology
or life cycle of an organism in the environment
(Frimpong and Angermeier 2010).

The concept of functional redundancy as the number
of taxonomically distinct species that have similar eco-
logical functions (Walker 1992) has become the focus of
some ecological questions. Mainly, this is because the
level of functional redundancy is related to the suscep-
tibility of communities to the loss of species (Sasaki
et al. 2009), and how the loss of diversity affects the
ecosystem is not clear (Fetzer et al. 2015). Therefore,
determining the relationships between taxonomic and
functional diversities that imply the analysis of function-
al redundancy has important implications for predicting
the consequences of disturbance or management re-
gimes for the functioning of a given ecosystem (Sasaki
et al. 2009). Although the number of studies that relate
taxonomic and functional diversity indices (see
Hoeinghaus et al. 2007; Teresa and Casatti 2012;
Cheng et al. 2014; Carvalho and Tejerino-Garro 2015;
Cilleros et al. 2016) and investigate functional redun-
dancy (see Micheli and Halpern 2005; Halpern and
Floeter 2008; Rice et al. 2013; Mouillot et al. 2014;
Casatti et al. 2015; Aguilar-Medrano and Calderon-
Aguilera 2016) of different communities has grown,
there are many questions to be answered about this
issue. Some of these questions are, for example, how
these indices are related and how this may reflect the
functional redundancy of biological communities.

Streams are a good system in which to analyse the
relationship between functional and taxonomic diversity
and thus to investigate functional redundancy. These
systems are suitable to this investigation because they
are dynamic water bodies with complex spatial hetero-
geneity (Schlosser 1991) and high endemism (Ribeiro
2006), and they are highly vulnerable to environmental
changes, mainly those that result in habitat homogeni-
zation. In the present study, we selected five Neotropical
streams that are moderately altered (i.e., although suf-
fering from anthropogenic influences, they still maintain
considerable habitat diversity to support fish fauna) to
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test for relationships between taxonomic and functional
diversity indices and their use to detect functional re-
dundancy of fish communities. We hypothesized that
these indices are positively related and that intermedi-
ately disturbed systems present low redundancy of func-
tional groups, even with increasing species richness.

Materials and methods
Study area

We conducted this study in five streams of the Paraiba
do Sul river basin in the Atlantic Rainforest domain,
southeastern Brazil. The basin area is approximately
57,000 km® and drains one of the most developed in-
dustrial areas of Brazil. Its waters are used for industrial
and domestic purposes, hydroelectric power generation,
and water supply for ca. 15,000,000 people in the cities
of Rio de Janeiro and Sao Paulo. Located in a metro-
politan region, the Paraiba do Sul basin has few rem-
nants of Atlantic Rainforest and mostly consists of
urban areas interspersed with large areas destined to be
used for agriculture and pastures. The climate is
mesothermic type Cwa according to Koppen classifica-
tion, with an average annual temperature of 20.5 °C (18-
24 °C) and average annual rainfall of 1500 mm
(Carvalho and Torres 2002). The wet season
(December to March) has accumulated rainfall between
200 and 250 mm month™, and the dry season (May to
August) has accumulated rainfall less than 50 mm
month™' (Marengo and Alves 2005). The streams select-
ed for this study are located along a 30-km stretch in the
middle-lower reaches of the Paraiba do Sul basin. These
reaches feature an average altitude of 300 m, and the
middle-lower section of the Paraiba do Sul River has an
extension of approximately 480 km (Marengo and
Alves 2005).

Fish collections

Fish sampling was carried out quarterly in two periods:
from February 2008 to May 2009 (seven excursions)
and from October 2012 to July 2013 (four excursions).
Each stream was sampled at two sites (upper and lower
stream) in the first period (2008-2009) and at a single
site (middle stream) in the second period (2012-2013)
(Fig. 1). Sampling effort was standardized to cover a
stream length of ca. 100 m. A total of 70 samples were
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Fig.1 Study area, Paraiba do Sul river basin, southeastern Brazil. Sampling sites from February 2008 to May 2009 (e), and October 2012 to
July 2013 (A). Streams code: T1, Jacu Stream; T2, Morro Grande Stream; T3, Claro Stream; T4, Entupido Stream; TS, Sdo Roque Stream

performed in the first period (five streams x two sites x
seven excursions), and 20 samples were collected in the
second period (five streams X one site X four
excursions).

In each site, the sampling unit was the sum of all fish
collected by using 10 sieves (80 cm diameter; 1 mm
mesh size), 10 casting nets (3 m diameter; mesh size
from 2 to 3 cm), and approximately one hour of elec-
trofishing with an AC generator (900 W, 220 V, 2.1 A)
connected to two hand nets, which were moved from
one side of the bank to the other to collect the fish
affected by the electric field. The sieve was used to catch
fish associated with marginal vegetation, while the cast-
ing net collected those species from deep pools.

The fishes that survived the electrofishing procedure
and those collected by using other gear were euthanized
by hypothermia. After this, the specimens collected
were fixed in 10% formalin, and after 48 h, they were
preserved in 70% ethanol. Fish were identified to the
lowest taxonomic level. Vouchered specimens were de-
posited in the fish collection of the Laboratério de
Ecologia de Peixes, Universidade Federal Rural do
Rio de Janeiro, under the numbers LEP-UFRRJ#: 983,

984, 995, 1037, 1039, 1040, 1066, 1072-1075, 1087,
and 1088-1090.

Habitat characteristics

In each of the sampled sites, three to five transects were
marked. In each transect, at five equidistant points
(spaced according to the transect width), we classified
the substrate based on its size: mud (<0.06 mm), sand
(0.06-2.0 mm), fine gravel (> 2.0-16 mm), pebble (> 16-
64 mm), or cobble (> 64-250 mm), following Kaufmann
et al. (1999). Moreover, we estimated the types of
mesohabitats (cascade, runs/riffles and pools) and types
of shelters (macrophytes, twigs, stones and emerging
roots). The percentage of different habitat characteristics
in each site was estimated visually. After that, we plotted
those percentages and visually evaluated the differences
in habitat characteristics among streams.

Functional traits

Thirty-two functional traits adapted from Pease et al.
(2012) and Villéger et al. (2010) were measured
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(Appendix Table S1). Each trait was defined based on
the ecological interpretation of morphological charac-
teristics. Twenty-five species were selected according to
the abundance and consequent availability of the spec-
imens for measurements of functional traits. For each
species, functional traits were measured in 20 adult
individuals of a similar size class using a digital calliper.
For the species with less than 20 individuals, all collect-
ed individuals were measured.

We used quantitative information (measurements) for
the functional traits instead of categorical information,
which is commonly used in fish studies (e.g., Erds et al.
2009; Teresa and Casatti 2012). According to Pease
et al. (2012), the use of fish traits measured directly
from the species enables characterization of several
niche dimensions.

Data analyses

We searched for potential patterns of fish assemblage
structure by using non-Metric Multidimensional Scaling
(nMDS) based on a Bray-Curtis similarity matrix of fish
abundance data to assess four factors: stream (five
streams), season (dry and wet), time (2008-2009 and
2012-2013), and stream reaches (upper, middle, and
lower). Prior to this analysis, the fish abundance data
were log (X+1) transformed to decrease the influence
of very abundant species. The nMDS procedures were
performed using the software PRIMER 6 (Clarke and
Gorley 2006).

To analyse the redundancy of the functional traits, we
performed a Spearman correlation analysis, since we
verified through a Shapiro-Wilk test (Shapiro and Wilk
1965) that the variables did not present a normal distri-
bution. We evaluated the correlation between pairs of
traits while considering the ecological interpretation of
each one and eliminating the trait with the same inter-
pretation that was highly correlated (> 0.8). To eliminate
the influence of size on the functional traits, we used a
procedure proposed by Pease et al. (2012). To do so, we
regressed each measured character on fish standard
length (size) and used the residuals from the regression
to carry out the Spearman correlation analysis.

We calculated both taxonomic and functional diver-
sity indices. The taxonomic diversity indices were
Species Richness (SR) and Simpson’s Diversity (SD)
(Magurran 2004). The functional diversity indices were
Functional Richness (FRic) and Functional Dispersion
(FDisp). FRic represents the amount of functional space
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occupied by fish assemblages (Villéger et al. 2008).
FDisp was proposed initially as a measure of beta di-
versity but was recently incorporated as a measure of
functional diversity (Anderson et al. 2006). This index is
an average distance of each species from the centroid in
multidimensional trait space, which is influenced by the
most abundant species (Lalibert¢ and Legendre 2010).
We chose to relate species richness to functional rich-
ness because species richness has been used as the main
measure in most studies linking species diversity to
functional diversity (e.g., Petchey and Gaston 2002;
Mayfield et al. 2005; Micheli and Halpern 2005;
Petchey et al. 2007; Sasaki et al. 2009). We chose
Simpson’s Diversity because it is analogous to Rao’s
quadratic entropy (de Bello et al. 2009), which is similar
to Functional Dispersion according to Laliberté and
Legendre (2010). Functional Dispersion has advantages
over the Rao quadratic entropy, since the former allows
more possibilities for statistical tests (see Anderson et al.
20006); thus, we used FDisp in our study. All indices
were calculated in R version 3.3.1. (R Development
Core Team 2016): Simpson’s Diversity by using the
Vegan package (Oksanen et al. 2015) and Functional
Richness and Functional Dispersion by using the FD
package (Laliberté and Legendre 2010; Laliberté et al.
2014).

To investigate the relationship between the taxonom-
ic and functional diversity indices (Species Richness
and Functional Richness; Simpson’s Diversity and
Functional Dispersion), we tested two different regres-
sion models based on dispersion plots (linear regression
model and logarithmic regression model). The corrected
Akaike Information Criterion (AICc) and model
weighting were considered to identify the best model
(Johnson and Omland 2004; Sasaki et al. 2009). We
used AICc instead of AIC to establish the selection
criteria, since the number of samples is small compared
to the number of predictor variables Burnham et al.
(2011). We further calculated Akaike weights (w;) for
each model for comparison purposes. The AICc was
calculated by using the AICcmodavg package
(Mazerolle 2017). All analyses were conducted in R
version 3.3.1 (R Development Core Team 2016).

Results

A total of 50 species of fish belonging to 13 families
and six orders and totalling 3,206 individuals were
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collected (Appendix Table S2). The order Siluriformes
showed the greatest richness (22), followed by
Characiformes (16). The order Characiformes, howev-
er, contributed higher values of abundance (43.1%),
followed by Siluriformes (36.1%). The families
Characidae and Loricariidae were the most represen-
tative in terms of numerical abundance, with each
contributing 37.2% or 26.6% of the total number of
individuals, respectively. The Characidae and
Loricariidae families also had the highest number of
species, with 12 and nine species, respectively. The
species Astyanax bimaculatus was the most abundant
(25.5%), followed by Ancistrus multispinis (20.9%)
and Astyanax scabripinnis (6.6%). Thirty-seven spe-
cies presented a percentage of the total number of
individuals captured of less than 1.0% (Appendix
Table S2). The species Astyanax bimaculatus,
Astyanax parahybae, Geophagus brasiliensis,
Gymnotus carapo, Phalloceros caudimaculatus and
Rineloricaria sp. 1 were common to all sampled
streams. Ten species occurred in only one of the
streams: Astyanax taeniatus, Characidium alipioi,
Neoplecostomus variipictus, and Pimelodella
eigenmanni (Entupido Stream); Kronichthys sp.,
Poecilia sp., and Trichomycterus sp. 2 (Jacu
Stream); and Pseudocorynopoma heterandria,
Pimelodus fur and Oreochromis niloticus (S@o
Roque Stream). The species Kronichthys heylandi
and Imparfinis minutus were caught only during the
second collection period (2012-2013), while
Corydoras nattereri was caught only in the first
(2008-2009). Entupido Stream presented the greatest
richness and abundance, containing 39 species and
35.6% of the specimens collected. Rio Claro Stream
presented the lowest values of richness and abun-
dance, with only 18 species and 3.8% of the total
number of individuals.

Habitat characteristics

The habitat characteristics were variable among streams.
In streams 1, 3, and 4, run/riffle mesohabitat and pebble
substrate predominated. The greatest shelter availability
in these three streams was composed of rocks. On the
other hand, streams 2 and 5 presented similar propor-
tions of mesohabitat composed of pools and runs/riffles.
Sand was the predominant substrate (Appendix
Table S3) (Fig. 2).

Functional and taxonomic relationship

The nMDS for species abundance (stress: 0.19) did not
depict a clear pattern of species distribution for any of
the tested factors (stream, period, season, or reaches)
(Fig. 3). Twenty-one traits were selected from the
Spearman correlation, and 11 traits were eliminated for
showing redundancy with other traits.

The functional and taxonomic indices showed slight
variation among streams in both periods sampled
(Appendix Table S4). The model selected according to
the AICc for both pairs of taxonomic and functional
indices was the linear regression model (AICc: SR and
FRic = 420.67; SD and FDisp = 102.32) (Table 1). The
models were selected with a low amount of uncertainty
because in both pairs, the model selected was five (SR
and FRic) or 10 (SD and FDisp) times more likely to be
a better model than the second one (Table 1a and 1b for
the evidence ratio). Our hypothesis of a positive
taxonomic-functional indices relationship was support-
ed by both pairs of indices tested (Species Richness and
Functional Richness: Rzadj =0.607; Simpson's Diversity
and Functional Dispersion: Rzadj =0.5137) (Fig. 4).

Discussion

In this study, we found a significant positive relationship
between functional and taxonomic indices. This finding
indicates low functional redundancy (see Micheli and
Halpern 2005; Sasaki et al. 2009). In a highly redundant
community, the loss of one species does not necessarily
mean the loss of a given function, since highly redun-
dant functions would be more persistent than the species
that are lost (Lundberg and Moberg 2003; Guillemot
etal. 2011). Redundant species are considered necessary
to ensure ecosystem resilience to perturbation (Walker
1992, 1995; Sasaki et al. 2009). However, in a commu-
nity with low functional redundancy, such as the assem-
blages studied here, the loss of a few species may in fact
represent the loss of a function, since a function can be
represented by very few species or even a single species
(Guillemot et al. 2011). Examples of a few species with
a specific function in our study are those in
Gymnotiformes (Gymnotus carapo (Linnaeus 1758)
and Gymnotus pantherinus (Steindachner 1908) and
Synbranchiformes (Synbranchus marmoratus Bloch
1795). They are very specialized species with specific
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Fig. 2 Graph representing the habitat characteristics of the five
streams of the Paraiba do Sul River, southeastern Brazil, sampled
in February 2008 to May 2009 and October 2012 to July 2013.

functions in communities, and their extinction could
mean the loss of their function in the system.

The examined streams still support a richness of 50
species in 13 families, which is a good representation of
the regional ichthyofauna. The high richness may be
associated with habitat heterogeneity that still offers
suitable conditions to support a fish assemblage. The
main anthropogenic changes to the studied streams were
the change from forest to pasture and the loss of riparian
woody vegetation. However, physical habitat heteroge-
neity (e.g., different types of substrate; pool, run and
rapid mesohabitats; and shelters made by wood and
rocks) was preserved, especially in sites far from the
main river channel at higher altitudes. The habitat hy-
pothesis (Simpson 1949; MacArthur and Wilson 1967)
states that habitat diversity is the best predictor of spe-
cies richness, even more so than the species-area rela-
tionship (Gaston and Blackburn 2000). This is because
heterogeneous environments can accommodate more
species and support greater variation in their traits since
they have higher amounts of microhabitats and thus
improved availability of spatial niches (MacArthur and
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Streams code: T1, Jacu Stream; T2, Morro Grande Stream; T3,
Claro Stream; T4, Entupido Stream; T5, Sdo Roque Stream

MacArthur 1961; Bazzaz 1975; Willis et al. 2005).
Thus, the habitat diversity our sites provide for fish
species works to maintain a certain species diversity.
This diversity reflects a growing functional diversity (as
much as the species richness increased, functional di-
versity followed the increment). However, it is not suf-
ficient to support the more sensitive species, such as
Taunayia bifasciata (Eigenmann & Norris 1900) and
Harttia loricariformis Steindachner 1877, which have
been listed for preserved streams from the Paraiba do
Sul river basin by Menezes et al. (1998), Pinto et al.
(2009) and Rondineli et al. (2011). These results cor-
roborate studies such as that of Teresa and Casatti
(2012) that analysed the influence of riparian vegetation
on taxonomic and functional diversities in stream fish.
In the study carried out by those authors, they found
greater functional diversity in streams with deforested
margins (but that still had a diversity of mesohabitats, as
in the case of our streams) compared to streams with
forested margins. This high functional diversity can be
explained by the availability of different instream habi-
tats, despite deforestation and the replacement of
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Fig. 3 nMDS analysis of the fish assemblages of the five tribu-
taries of the Paraiba do Sul River. Samples are indicated by: A -
Sampling periods: @ —2008-2009, o —2012-2013; B — streams: O
— Jacu Stream, m — Morro Grande Stream, o — Claro Stream, A —

sensitive species by generalist and tolerant species
(Teresa and Casatti 2012).

Low functional redundancy in intermediately dis-
turbed systems was a main finding of the present study.
Our results confirm our initial hypothesis and indicate
that care is needed in the management of the studied

Table 1 Results of model selection for the relationship between
taxonomical and functional indices and test statistics from the best
models, listing the corrected Akaike Information Criterion (AICc),

Entupido Stream, ® — Sdo Roque Stream; C - Seasons: ® — wet
season, o —dry season; D - stream reaches: A —upper, m—middle,
o — lower

streams, since assemblages with low functional redun-
dancy are more susceptible to loss of functions in the
case of species loss. Thus, we recommend that indices
of taxonomic and functional diversity be used together
to evaluate functional redundancy as part of monitoring,
impact assessment, and plans for creation of new

the difference from the ‘best fit’ model (AAICc), the Akaike
weight (w;), and the evidence ratio (w; /w;; w; from the best fitted
model/w; from the second model) for each best fitted model

Models AlCc AAICc w; Wi/W; dF Fstat Pvalue
Species richness vs. Functional Richness
Linear model 420.67 0 0.85 5.66 59 64.39 <0.001
Logarithmic model 42413 3.56 0.15 59 57.59 <0.001
Simpson’s diversity vs. Funciontal dispersion
Linear model 102.32 0 0.91 10.11 59 93.63 <0.001
Logarithmic model 107.03 471 0.09 59 82.2 <0.001
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conservation units. Thus, functional redundancy should
be used as a key component of management (conserva-
tion, recovery or intervention) decisions. Management
and conservation strategies for protecting biodiversity in
these systems should seek to enhance resources and
habitat availability. This will ultimately increase func-
tioning and contribute to increased redundancy.
Additionally, identifying vulnerable functional groups
and their redundancy levels and highlighting which
species are needed to maintain functions is crucial to
reach these goals (Micheli and Halpern 2005). We also
recommend that consideration be given to careful selec-
tion of functional traits as well as intraspecific variation
in future studies.
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